Quick Glance

In this lesson, campers will:

• Learn about the many different ways to garden
• How to make a sub-irrigated planter
• How vegetable and fruit gardens are an important source of food (OPTIONAL)

Tasks:

✓ Discussing and visualizing different ways of gardening
✓ Making sub-irrigated planters or developing a new type of garden
✓ Taking stock of the gardening experience
✓ OPTIONAL: Reflecting on how different ways of gardening are beneficial, especially when it comes to food access
Day 5: Gardening My Way

About:
In this lesson, campers have an opportunity to plant in a variety of containers, using basic gardening practice and principles. There is a focus on sub-irrigated planters, which are great in urban environments. This lesson also probes issues of food justice and accessibility. **REMIND:** Campers will bring their found planting objects to class the next day.

Achievement-Based Objectives:
These describe what the camper will have learned and might apply during and beyond the gardening session. At the end of this lesson, campers will have:

- Explored different ways to garden
- Constructed a sub-irrigated planter
- Explained why different ways of gardening benefit people

Lesson Focus:
Multiple ways to garden, sub-irrigated planters, food access and security (OPTIONAL), gardening in the Frost Valley garden

<table>
<thead>
<tr>
<th>Grade Level</th>
<th>Time</th>
<th>Main Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-6</td>
<td>60 minutes</td>
<td>Different Ways to Garden</td>
</tr>
</tbody>
</table>
Materials and Prep:

Prepare the following materials before the session. Handouts and items to duplicate and/or enlarge are in *Lesson Docs* at the end of the lesson.

<table>
<thead>
<tr>
<th>Task</th>
<th>Items</th>
<th>Preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starter</td>
<td>✓ Doc 1: What campers will learn
✓ Self-adhesive chart paper
✓ Markers</td>
<td>Reproduce the camper-friendly objectives on chart paper. Include only those that match tasks campers will do during the session.</td>
</tr>
<tr>
<td>Different Ways to Garden</td>
<td>✓ Self-adhesive chart paper
✓ Markers
✓ Crayons, colored pencils, etc.</td>
<td>Place the arts and crafts materials in a central location accessible to all campers</td>
</tr>
<tr>
<td>Sub-irrigated and other planters</td>
<td>✓ Materials are listed for each task.
✓ Doc 2: Sub-Irrigated Planters
✓ Doc 3: Types of Gardens</td>
<td>✓ If working on SIPs, decide which kind in order to collect enough materials. Decide whether campers will work in small groups or individually.
✓ If other gardening methods are to be used, decide which of those would best complement the overall garden at Frost Valley (for example, an herb spiral or a straw bale garden for diversity and comparison).</td>
</tr>
<tr>
<td>Gardening</td>
<td>All items for general gardening tasks are listed in the Gardening at FV Overview packet.</td>
<td>Review the overview carefully.</td>
</tr>
</tbody>
</table>
Procedures

<table>
<thead>
<tr>
<th>Step</th>
<th>Task 1: Starter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>When campers arrive, if desired, invite them to take a quick look around the garden to check in. They will have more time in the garden later.</td>
</tr>
<tr>
<td>2</td>
<td>Have everyone sit in a circle. Ask the group if any gardening thoughts have come to mind that they want to share. Record questions and comments. Provide feedback where you can, and if you can’t, tell campers you will get back to them.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step</th>
<th>Task 2: Different Ways of Gardening</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Ask campers how people can garden if they don’t have yards, open space, community or other gardens, but really would like to grow something. What can they do?</td>
</tr>
<tr>
<td>4</td>
<td>Have pairs come up with other ways to garden. Distribute chart paper and a marker to each team. Have them list or draw their ideas.</td>
</tr>
<tr>
<td>5</td>
<td>Have campers share their ideas and/or designs. Record the ideas and point to some of the more nontraditional methods campers might have named: air plants, plants that don’t use soil, terrariums, vertical gardens, etc. Emphasize that there are different ways to garden, even in the "city” where space is tight, where soil is often not of good quality, where access to water might be limited, etc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step</th>
<th>Task 3: Gardening My Way</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>There are several options for this task. Choose based on the group, time, available materials, etc.</td>
</tr>
</tbody>
</table>

1) Have each camper make a soda-bottle SIP, which not only creates an understanding about effective watering, but it also allows for some visibility of the life cycle, and reinforces the reduce, reuse, recycle concept. Campers can take these SIPs home.

2) Have groups of campers make larger SIPs (tote and bucket) that can be placed alongside the main garden. This allows for a great comparative study of gardening methods.

3) Campers can work on SIPs and another type of gardening method, such as an herb spiral or straw bale garden. Ideas are listed on **Doc 3: Types of Gardens**. The ones that would work best within the Frost Valley are shaded yellow.

4) Groups can work on the different types of SIPs and a variety of unique planters.
<table>
<thead>
<tr>
<th>Step</th>
<th>Task 5: Gardening</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>For this final day in the garden, ask campers to take one more walk around the garden, discussing their favorite plants, their favorite gardening task, and ideas they have for gardening at home, in the community, at school, etc.</td>
</tr>
</tbody>
</table>
| 10 | **OPTIONAL FOR OLDER CAMPERS:** Ask campers to think about why being able to garden in different places, especially when it involves vegetable and fruit, is a good idea. Have them reflect on the earlier discussion about food justice, especially food access issues.
 ✓ What benefits do fruit and vegetable gardens have?
 ✓ What's great about being able to grow the food you eat?
 ✓ What's the difference between fruit and vegetables from a garden and the store?
 ✓ Why aren't more people growing their food, if it's a more affordable and healthier way to access food?
 ✓ How do things like SIPs allow for gardening in challenging locations? |
<table>
<thead>
<tr>
<th>LESSON DOCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doc 1: What campers will learn</td>
</tr>
<tr>
<td>Doc 2: Sub-Irrigated Planters</td>
</tr>
<tr>
<td>Doc 3: Types of Gardens</td>
</tr>
</tbody>
</table>
Doc 1: What campers will learn

Reproduce the following on a sheet of self-adhesive chart paper. Post so campers can see the list. Modify accordingly.

You, the campers, will learn:

- About the many different ways you can garden
- How to make a sub-irrigated planter
- How vegetable and fruit gardens are an important source of food (OPTIONAL FOR OLDER CAMPERS)
Doc 2: Sub Irrigated Planter (SIP)

Key Concepts

A SIP is any method of watering plants where the water is introduced from the bottom, allowing the water to soak upwards to the plant through capillary action. (sometimes called wicking, this is when liquid flows in narrow spaces without the assistance of, and in opposition to, external forces like gravity).

SIPs hold tanks of water and air inside the planter, giving plants a constant supply of what they need to grow. With this steady access water and oxygen through the reservoir, the root system grows rapidly and in a larger volume. When plants receive water in this way, they absorb moisture more efficiently and more evenly.

Sub-irrigation also allows plants to develop stronger and healthier root systems because the roots do not become overly saturated with water. This type of watering also pushes salts away from the plant’s soil and allows for longer periods of time between watering.

SIPs are great for urban areas. They can fit into small spaces, like a balcony; are of varied sizes; and are great in hot, dry summers, especially if a plant needs regular watering.

SIPs are also useful if the soil in your yard or garden is full of toxins. You get to fill SIPs with untainted quality, nutrient-rich soil.

There are many ways to make SIPs (they can also be purchased). You can even reuse materials handy in the home to put one together.

You can plant vegetables in SIPs, the amount depending on their size (and of course, how many you can fit in a location).

A simple SIP has three major parts: a container for soil, a container for water, and a wick that allows water to be drawn from the water container into the soil container.
There are a variety of ways to make SIPs. There is also the EarthBox® (www.earthbox.com/), which is easily assembled and comes in kits, with discounts for educational organizations. The Grow Box by Garden Patch is another good choice, a bit cheaper than the EarthBox®. But building a SIP is really the way to go.

Soda Bottle SIP

Source: http://projecthopeart.org/sip-sub-irrigated-planters/

Materials

- Scissors
- 2 liter plastic bottle
- 3 cups of potting soil (good quality, organic, no chemicals or other treatments, no vermiculate)
- 2 strips of fabric
- Seeds (beans, tomato, pepper)
- Water

Directions

1. Carefully puncture three drainage holes 3.5 inches below the cap on both sides of the bottle.
2. Pierce a hole along the dotted line on the bottle.
3. Using scissors, cut along the line.
4. Take off the bottle cap.
5. Invert bottle top and insert strips of fabric.
6. Add the dampened soil to the bottle.
7. Plant the seeds.
How to make a 2-Liter SIP (sub-irrigated planter)

1. Cut your 2-liter bottle in half.
2. Puncture 3/8" holes approximately 1" apart to the top of the bottle.
3. Cut two strips of wicking fabric (we use Pelton Thermolam Plus) 4" inches long and 1" wide and insert into the neck of the bottle.
4. Add about 3 cups of damp, soil-less potting mix (usually a blend of peat and perlite) mixed with a handful of organic fertilizer.
5. Sow seeds or plant a seedling. Water lightly from the top just once to settle them in.
6. Add water to the base of the planter.
7. The wicking fabric will draw water up to the plant, which conserves water.

To learn more visit us at: greenroofgrowers.blogspot.com and The Singing Seed Design: Debbie Kong
Sub-Irrigated Planter (SIP) Totes v2

What’s sub-irrigated planter (SIP)?

It’s a method of watering plants where the water is introduced though the bottom of the planter. This allows the water to wick up through the growing medium, usually the potting mix, by the way of capillary action. With pure physics at work, the plants get the right amount of water.

Soil usually has poor capillary action and is not an ideal medium for a SIP. Which is why the potting mix (a blend of compost, peat moss, and perlite) is used. Some commercial potting mix contain limestone to balance the pH value and some slow release fertilizer as plant nutrient.

The advantages of sub-irrigated gardening are many:

Needs very little space: A small space with sufficient sunlight would do nicely. It could be a rooftop, balcony, a deck, driveway, paved patio, or even a fire escape.

Needs little resources: Many popular sub-irrigated planters are made from two 5 gallon buckets (shown on top).

Needs little attention: The system is self-regulating; you cannot over or under water the plant. Does not need monitoring the fertilizer level either.

More productive: SIPs will produce more food per square foot than in-ground gardening while conserving water. This is safe food production with no exposure to contaminated soil.

More eco-friendly: The buckets can be recycled from food grade oil or margarine buckets from restaurants or bakeries. They conserve water by keeping it contained in the planter. There are no fertilizer run offs into rivers and streams. The planting medium can be used for 5 growing season before composting.

The sub-irrigated tote planter is built on similar principle. This is version 2 that is very simple and easy to build.
Sub-Irrigated Planter (SIP) Totes v2

You will need:
- One 25-gallon tote with lid
- 1 Perforated corrugated pipe 4” x 10’
- 1” diameter PVC tube 2 feet in length
- One 16 oz disposable drinking cup
- 1-2 cubic feet potting mix (not soil)
- Organic fertilizer (7-7-7 or 10-10-10)
- 2 cups
- If you are growing tomatoes you will need 1-2 cups of hydrated lime to prevent blossom end rot
- 1 Black garbage bag (optional if you don’t have a lid)

Tools:
- 3.5” hole saw
- 3/8” drill bit
- Landscape Fabric
- Scissors
- Box Cutter
- Hack saw

Use caution when using power tools. Read the manual and always wear safety goggles.

Cost:
- $12.15. Cheaper if the buckets are on sale.

Procedure:
Cut the perforated corrugated pipe to fit the tote.

Arrange the cut pipes inside the tote. In this case it was a nice tight fit.
Creating a Sub-Irrigated Planter (SIP)

Cut one end of the 1" PVC pipe at a 45 degree angle. A hack saw or a table saw can make a clean cut.

This cut is vital. It prevents loose soil and debris from clogging the fill tube.

Cover the top of the corrugated pipes with landscape fabric. This prevents the potting mix from clogging the holes.

Cut a 1" hole in the perforated corrugated pipe and the landscape fabric and insert the 1" PVC pipe. Insert the 45 degree end of the pipe into the corrugated pipe through the 1" hole. This tube will act as a feed tube to fill water.

Insert 2-3 holes about 3/8" in diameter to allow for aeration and draining of excess water.

This hole should be about 3.5 inches from the bottom. The calculation being the perforated, corrugated pipe is about 4.5 inches in diameter. This gives 1" space for air that will provide aeration to the roots.
Creating a Sub-Irrigated Planter (SIP)

Make a hole in the corrugated pipe in the center to insert a 16 oz disposable cup. If the hole is about 3.5” then the 16 oz cup should fit snugly.

Now take the 16 oz disposable cup and make an “X” shaped cut at the bottom.

Also make 4 vertical cuts of 3” on the side of the cup.

It is through these cuts that water will connect with the potting mix in the tote.

Insert the cup into the hole.

Wet part of the potting mix until it is a slurry. And fill the 16 oz disposable cup and the drain holes with this wet slurry of potting mix. Wetting the potting mix will help it cover the holes without falling to the bottom.

Fill to the top with potting mix. If you plan to grow tomatoes add 1-2 cups of hydrated lime when you are about half way level.

Add 2 cups of 10-10-10 fertilizer strip when you are about 2” away from the top.
Creating a Sub-Irrigated Planter (SIP)

Add more potting mix and fill all the way to the top.

Depending on what you are going to plant make appropriate holes. In this case I made two 3.5” holes to hold eggplants.

For a more detail guide on planting instruction for Totes visit http://goo.gl/bALCI

Two eggplant saplings transplanted to the tote. Water directly from the top only the first time around, either when laying seeds or while transplanting. Rest of the time the tote is watered through the fill tube.
Creating a Sub-Irrigated Planter (SIP)

Alternate Way.

This version does away with the need for a 16 oz disposable cup.

One of the perforated corrugated pipe is cut short so to provide space for 2 holes. It is through these two holes that water will connect with the potting mix in the tote.

Place the 1" PVC (2 feet long) tube in the 1" hole. This will act as a feed tube to fill water. Ensure the end of the pipe that makes contact with the water is cut at 45 degree angle.

Cover the pipe with landscape fabric. This prevents the potting mix from clogging the holes.

Wet part of the potting mix until it is a slurry. And fill the two holes with this wet slurry of potting mix.

Insert 2-3 holes about 3/8" in diameter to allow for aeration and draining of excess water.

This hole should be about 3.5 inches from the bottom. The calculation being the perforated, corrugated pipe is about 4.5 inches in diameter. This gives 1" space for air that will provide aeration to the roots.
Creating a Sub-Irrigated Planter (SIP)

When you are half way through filling the bucket spread a cup of garden lime. You will need to do this step only if you are growing tomatoes. Garden lime helps prevent blossom end rotting that's caused by calcium deficiency.

Now continue to fill the potting mix till you reach 2 from the top of the bucket. Add 2 cups of 10-10-10 organic fertilizer in the form of a ring around the edge of the bucket or the middle depending on what you are planting. For a more detail guide on planting instruction for totes visit http://goo.gl/bALCl

Now, fill the tote to the top with potting mix. Once filled, cover with a plastic sheet, lid or a black garbage bag.
Creating a Sub-Irrigated Planter (SIP)

Shown here 8 sky hot peppers I got from the farmers market.

Water directly from the top only the first time around, either when laying seeds or while transplanting. Rest of the time the tote is watered through the fill tube.

I use plastic sheets or garbage bags to cover the tote. This is handy when planting greens like spinach, kale, swiss chards etc.

Clip them on the side to hold it securely.
5-Gallon Bucket SIPs

The bucket SIP is common for larger plants. Campers should not use tools; show the campers how to make one, but have buckets/containers already prepared if this is the SIP to be constructed.

Materials

- 2 food-grade, 5-gallon plastic buckets, one, with a lid
- 1 16-ounce plastic drink cup, or a 32-ounce plastic yogurt container, or anything similar that you can punch holes in. A plastic bucket of similar size would work, too.
- 1 bucket lid (can use a plastic garbage bag)
- Plastic twist ties
- 17 inches of 1-inch-diameter PVC pipe, copper tubing, a bamboo tube or anything similar
- A big bag of potting mix
- Drill, keyhole saw, safety knife, or saber saw

Directions

1. Cut a hole right in the center of the bottom of one of the buckets. The yogurt container or the container being used sits in this hole so that it hangs down into the water reservoir below (the bottom bucket) to serve as the wicking chamber. Cut the hole by tracing an outline of the cup on the bottom of the bucket, and then cutting a little inside the line. Make sure that the wicking chamber fits in the lower bucket. If the chamber is too tall, you won’t be able to fit the two buckets together. This can be adjusted.

2. Cut another hole in the bottom of the same container, anywhere near the outside edge (anywhere but the center). This hole is for the pipe that will refill the reservoir and should be sized accordingly. Trace around one end of your pipe and cut.

3. Drill lots of 1/4-inch holes on the bottom of the bucket. These are ventilation holes, so there is no exact spacing or number. Don’t put holes in the other bucket.

4. Punch or drill random ½ inch holes all over the sides of the yogurt container, but not on the bottom. These big holes will let water seep into the soil in the chamber and into the soil above.

5. Attach the wicking chamber to the bottom of the top bucket with four twist ties (loosely attach). Drill holes at the 12, 3, 6, and 9 o’clock positions just below the top edge of the cup, and drill corresponding holes near the edge of the large hole you cut in the middle of the bucket. Thread plastic twist ties through these holes to secure the wicking chamber so that it hangs beneath the holey bucket.
6. If necessary, cut the pipe that feeds the reservoir to a good length. You want it to poke out of the top of the container for easy watering. Seventeen inches is just about right for this project. Cut one end of the tube on the diagonal, and put this end down in the bucket. The angled end will allow water to flow freely out of the tube and into the reservoir.

7. Place the bucket fitted with the suspended wicking chamber into the untouched bucket.

8. Make your overflow hole. Figure out where the bottom of the top bucket sits in relation to the bottom bucket. Try holding it up to strong light, or employing a ruler. Drill a 1/4-inch hole in the side of the lower bucket (the previously untouched bucket), placing the hole just a little beneath the bottom edge of the inside bucket. This hole will serve to spill off overflow from the reservoir chamber. You want the top bucket to be wicking water, not sitting in water.

9. Finally, insert the watering pipe through the hole you drilled in the bottom of the inner bucket. Be sure to put the pointy end in the bucket. The flat end will stick out the top.

10. Fill your new container with potting mix (not gardening soil). Fill the container all the way to the top, moistening the soil as you go.

11. Plant your plant, dead center.

12. Make a circular, shallow trough around the perimeter of the plant, and sprinkle about some compost in the trench. Then cover the trench up with a little potting soil so the compost is just slightly buried (don’t work into the soil).

13. If you've got a lid for the bucket, and your plant is small enough, cut a hole in the center of the lid for the plant to poke through, then ease the lid into place, threading the plant's leaves through the hole. The lid will help retain moisture. If you don’t have a lid, or if your plant is too big, cut an X in a plastic garbage bag and lay it across the top of the pot, securing it around the sides with a length of tape or string, or if you have a lid for the bucket, you can cut out the center and use the rim to secure the plastic.
Doc 3: What’s in the Garden?

There are a variety of gardens that campers can make. Vertical and hydroponic gardening are other ways to grow food, especially in tight spaces. Note that there are also ready-made items that can be purchased for the various types of gardening, but the goal here is for campers to construct from scratch (using found items to encourage the notion of reduce-reuse-recycle).

Vertical gardening

Vertical gardening is an innovative way to produce food and to create decorative gardens in a limited amount of space. With access to an adequate supply of light and water, more than double the amount of plants can be grown. When grown in tight spaces, the resulting effect can be a “living” wall with the whole surface covered with vegetation.

- **How to Start a Vertical Garden**
 http://edibleschoolyard.org/node/6001
- **Grow up - Vertical Veggie Gardens are on the Rise**
 http://www.kidsgardening.org/node/98250
- **Vertical Garden with Plastic Containers**
 http://www.kidsactivities aft and-games/gardening-for-kids+31/vertical-garden+12266.htm
- **Classroom Vertical Garden Project**
 http://www.powerhousegrowerskids.com/classroom-vertical-garden-project/
- **Pallet Vertical Garden**
- **DIY Vertical Gardening**
 http://dirt.asla.org/2013/08/13/diy-vertical-gardening/

Straw Bale Gardens

Straw bale needs some conditioning first. They are great for vegetables, such as tomatoes, peppers, eggplant, squash, melons, and herbs. These gardens have several benefits: They are typically weed free. Once they begin to decompose, they have great compost. Bales are an alternative to hard, rocky soil, or heavy clay soil with poor drainage. It is even possible to garden in straw bales placed directly on a concrete patio slab or an old asphalt parking area.

- **Gardening in Straw Bales**
 http://davesgarden.com/guides/articles/view/1084/
Herb Spiral

Herb gardens with specific types of herbs (mint, lavender, and rosemary) are great for attracting pollinators. They are also another type of space-saving vertical gardening. Herbs offer a great sensory experience.

- **Building an Herb Spiral**
 www.ecoheartededucation.wordpress.com/2013/05/28/herb-spiral-lesson-plan/
- **4-Step Guide to building an Herb Spiral**
- **Planting for Pollinators: Construct an Herb Spiral Garden!**
 http://www.kidsgardening.org/node/97198
- **Making an Herb Spiral**
 http://www.slideshare.net/pd81xz/school-143

Pollinator Gardens

Pollination is an integral aspect of the plant lifecycle. Gardens present a great opportunity for this amazing process. Campers can either reconstruct an existing bed to create a full pollination garden. One focus could be creating a pollinator garden that draws imperiled species, like the monarch butterfly.

- **Growing Milkweeds**
 http://www.monarchwatch.org/milkweed/prop.htm
- **Butterfly Gardening for Monarchs**
- **Pollinator Partnership**
 http://pollinator.org/resources.htm
- **Creating a Pollinator Garden**
 http://www.kidsgardening.org/node/11941
- **Kids Growing Strong: A Garden is a Busy Place**
 http://pollinator.org/resources.htm
- **Great Pollinator Project**
 http://greatpollinatorproject.org/education
Rain Garden

Rain gardens provide a perfect setting for teaching about water quality, habitat creation and the impact of people’s actions on natural resource protection. The plants in a rain garden have high tolerance for excess moisture and increased levels of nutrients often found in stormwater.

Source: http://www.kidsgardening.org/node/76298

- **How to Design a Rain Garden**
- **Rain Gardens for Educators**
 http://www.irwp.org/education-and-outreach/rain-gardens-for-educators/

Hydroponics

Hydroponics is growing plants by supplying all necessary nutrients in a plant's water supply rather than through the soil. Growing plants hydroponically helps gardeners and farmers grow more food more rapidly in smaller areas (greenhouses, living rooms, classrooms, and rooftops, for instance) and to produce food in parts of the world where space, good soil, and/or water are limited.

Source: http://www.kidsgardening.org/node/3760

- **Hydroponic Experiment for Kids**
- **Where is the Dirt? A Lesson in Hydroponics**
 http://alex.state.al.us/lesson_view.php?id=7348
- **Hydroponics**
- **All about Hydroponics**
 http://allabouthydroponics.blogspot.com/2012/02/substrates.html#.U5iSfmzD8dU
The following list represents other types of gardening campers might want to do at home.

Air Plant Gardens

- **DIY: Itty Bitty Planters**
- **How to Make an Air Plant Terrarium**
 http://www.quickenloans.com/blog/air-plant-terrarium

Terrarium

- **Make a Terrarium Mini Garden**
 http://climatekids.nasa.gov/mini-garden/
- **A Terrarium for Kids**
 http://www.stormthecastle.com/terrarium/terrariums-for-kids.htm

Mini Vegetable and Fruit Gardens

- **Mini Gardens and Containers for Vegetables**
- **Mini farm box in a window**
- **Mini Herb Fairy Gardens**
 http://www.growingherbsforbeginners.com/mini-herb-gardens/
- **The 16 Best Healthy, Edible Plants to Grow Indoors**